Reading or writing a dataset with custom Python code¶
When you use a Python recipe to transform a dataset in Dataiku DSS, you generally use the DSS Python API both to read and to write the dataset.
This DSS API provides an easy way to read or write datasets, regardless of their size or data store. This way, you don’t need to install specific packages for interacting with each data store, nor to learn specific APIs.
There are some cases, however, where the DSS API does not provide enough flexibility, and you want to use the specific API or package for your datastore.
Some use cases could include:
You want to read data, which is stored in a MongoDB collection with a specific filter, which is not represented in the filter for the input dataset.
You want to “upsert” data into the output dataset (i.e., insert, update, or remove records based on a primary key).
The usage of the DSS API is by no means mandatory. You can read data and write data however you want. If you don’t call the get_dataframe
or iter_tuples
methods, DSS will not read any data, nor load anything in memory from the datastore.
Similarly, you don’t have to use the write_dataframe
or get_writer
API to write data in the output. Even if you use a writer that DSS does not know about (for example, the pymongo
package for MongoDB), the recipe will work properly, and DSS will know that the dataset has been changed.
Accessing info about datasets¶
You generally want to avoid hard-coding connection information, table names, etc. in your recipe code. DSS can give you some connection / location information about the datasets that you are trying to read or write.
For all datasets, you can use the dataset.get_location_info()
method. It returns a structure containing an info
dict. The keys in the info
dict depend on the specific kind of dataset. Print the dict to see more (NB: you can do that in a Jupyter notebook). Here are a few examples:
# myfs is a Filesystem dataset
dataset = dataiku.Dataset("myfs")
locinfo = dataset.get_location_info()
print locinfo["info"]
{
"path" : "/data/input/myfs"
}
# sql is a PostgreSQL dataset
dataset = dataiku.Dataset("sql")
locinfo = dataset.get_location_info()
print locinfo["info"]
{
"databaseType" : "PostgreSQL",
"schema" : "public",
"table" : "mytablename"
}
In addition, for “Filesystem-like” datasets (Filesystem, HDFS, S3, etc.), you can use the get_files_info()
method to get details about all files in a dataset (or partition).
dataset = dataiku.Dataset("non_partitioned_fs")
fi = dataset.get_files_info()
for filepath in fi["globalPaths"]:
# Returns a path relative to the root path of the dataset.
# The root path of the dataset is returned by get_location_info
print filepath["path"]
# Size in bytes of that file
print filepath["size"]
dataset = dataiku.Dataset("partitioned_fs")
fi = dataset.get_files_info()
for (partition_id, partition_filepaths) in fi["pathsByPartition"].items():
print partition_id
for filepath in partition_filepaths:
# Returns a path relative to the root path of the dataset.
# The root path of the dataset is returned by get_location_info
print filepath["path"]
# Size in bytes of that file
print filepath["size"]
Partitioned datasets¶
If your recipe deals with partitioned datasets, in input or output, you need to be careful about reading and/or writing the correct data.
Reading¶
When reading using a custom reader, you need to make sure that you only read data from the correct input partitions (as defined by the partition dependencies).
On an input dataset, the list of partitions to read is available using: dataset.get_read_partitions()
. This list is available as a Python list of strings, representing partition identifiers. It is up to you to convert this to a proper filtering query for your input data.
Writing¶
When writing using a custom writer, you need to make sure that you only insert data into the output partition of the current execution of the recipe.
On an output dataset, the partition to write to is available using: dataset.get_write_partition()
.
It is a string representing the partition identifier. It is up to you to convert this to proper commands for writing into the appropriate partition.